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Abstract
In a bid to perform model-based diagnostics on the electrical network of an automobile, 

experimental work and analysis was conducted to model an automotive lead-acid battery over 

the domain in which one is expected to operate. First, a thorough literature review discusses past 

attempts at modeling, as well as state and parameter estimation. Also, the literature on the aging 

and failure modes of batteries is presented. Next, the model selected is described, consisting of a 

locally linear time-invariant system approximation of a globally nonlinear time-variant battery. 

To obtain the parameters best enabling this approximation, a series of experiments were 

performed on a battery, the methodologies of which are detailed. Finally, the details of parameter 

extraction are also presented, along with their results. 
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Datastore
All the data and programs used in this thesis will be collected and placed on a CD-ROM 

or a USB drive. This will be referred to as the thesis datastore through this work, and will be 

deposited with the Battery group at the Center for Automotive Research (CAR), at The Ohio 

State University. The thesis will refer to directories in this datastore, and will serve as a lengthy 

user manual to the software and data.
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1 Introduction
This chapter will provide background on the topic of research, present its motivation and 

scope, and summarize its current state with a literature review.

1.1 The automotive electrical network
An automobile's electrical network consists of an alternator, a battery, a voltage regulator, 

and several electrical and electronic loads (fans, computers, motors, gages, etc.). The alternator is 

an electric generator that is physically coupled to the engine and can be controlled by the voltage 

regulator to convert mechanical engine power to electric power for on-board electrical loads, as 

they switch on and off. Standard modern consumer vehicles ship with alternators that can 

provide up to 80 to 100 A; it may therefore be understood that these vehicles are designed to 

adequately power loads that in total draw this much current.

The primary function of the battery in this network is to buffer the output of the alternator 

by absorbing any high-frequency pulses it may generate and by meeting transients in current 

draw while the alternator readjusts to meet such a new load. Furthermore, the battery powers the 

starter motor that cranks the engine to start it.

The average driving cycle therefore consists of: the battery providing very high current 

(more than 600 A) for less than a second to drive the starter motor to start the engine and 

immediately thereafter powers all electrical loads. The alternator, in a matter of seconds, begins 

to generate the current drawn by these loads and the battery's discharge current decreases. As the 

vehicle is driven, the battery lapses to a quiescent state where it discharges only to meet 

transients in current requested (for example, when the air conditioner is turned on, it will take the 

alternator a few seconds to meet this large load; meanwhile, the battery will provide the current 

needed to power it) but otherwise is steadily recharged. 
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1.2 Lead-acid battery principles of operation
The battery as described has been an integral part of the automotive electrical network for 

many decades and the fundamental lead-acid technology has not changed. It consists of 

essentially two electrodes immersed in sulfuric acid electrolyte. Some modern advances include 

adding of valves to the battery and immobilizing the electrolyte (either by being absorbed by an 

absorbent glass mat, AGM, or by gelling using silicon dioxide [1]), allowing it to be used in any 

orientation, and also allowing it to be “sealed,” making it maintenance-free. They cannot be 

hermetically sealed because by necessity they have vents to allow discharge of gas during faults, 

and so these batteries are called sealed valve-regulated lead-acid (VRLA) and are the kind 

generally used in automotive starting, lighting, and ignition (SLI) applications.

It may be said that the main purpose of the battery in a car is to start the engine; only after 

this has been accomplished can the battery's secondary roles of providing power during high 

transient loads and maintaining charge be fulfilled. Therefore, the design of lead-acid batteries 

for orthodox automotive SLI applications (i.e., not for hybrid electric vehicles, forklifts, or 

golfcarts, etc.) maximizes power density, cycle life, and ease of manufacture. Ability to perform 

at high levels of discharge is not important, and therefore it is considered unhealthy to leave a 

battery at any level of discharge. [2] details these design and construction tradeoffs, but an 

important resultant consideration is that plates and separators must be thin and porous to 

maximize the amount of current that can be delivered during cranking. 

Returning to the general operating principles: the negative terminal is the electrode 

attached to lead-containing spongy active mass, whereas the positive terminal is attached to a 

porous grid containing granules of metallic lead dioxide. These two materials are arranged in a 

matrix and are separated and immersed in concentrated sulfuric acid electrolyte to provide the 

mobile positive and negative charges. The matrix comprises a cell, several of which are placed in 

series to form the battery [6]. Modern SLI batteries contain six cells, each with a nominal voltage 
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of 2.1 V [5]. 

The redox reactions occurring at the two electrodes during discharge are given below [2]. 

The charging reactions are exactly reversed. 

• Positive electrode:
• PbO2 + 4H+ + 2e- → Pb2+ + 2H2O 
• Pb2+ + SO4

2- → PbSO4

• Negative electrode:
• Pb → Pb2+ + 2e-

• Pb2+ + SO4
2- → PbSO4

(1)

In words, during discharge, the positive electrode accepts electrons that the negative one 

gives up (recalling that electric current is the flow of hypothetical positive charges). In this 

discharge case, the positive electrode is the anode because it is being oxidized; the negative 

electrode is the cathode because it is doing the oxidization, i.e., being reduced. By convention, 

then, this is reversed for the charging case. It may be noted that the movement of charge clearly 

uses the dissolving and precipitating of charge-carrying ions through the electrolyte.

From this electrochemical view of the battery, we examine some of the higher-level 

characteristics of batteries that are used to describe their behavior.

1.3 Overview of battery characteristics
This section will discuss the parameters and characteristics of all batteries, and specific 

idiosyncrasies of lead-acid batteries, as they impact the modeling process. All the modeling 

performed is done with these characteristics and behaviors in mind.

1.3.1 Rechargeable vs. non-rechargeable
A battery designed to allow the charging chemical reaction efficiently is called a 

secondary battery, as it may be recharged by applying current. A primary battery is one that is 

not rechargeable. All automotive batteries are, therefore, secondary batteries.
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1.3.2 Capacity
The amount of capacity that a battery pack can store is measured in units of Ampere-

hours (A-h). This unit of measure is the amount of electricity delivered at one Ampere over one 

hour, and a capacity defined as such indicates the amount of charge that can be drawn for some 

length of time before the battery is considered discharged. There is a fair amount of flexibility in 

what constitutes “completely discharged” and most manufacturers do not conform to any 

standard. Theoretically, for a battery rated at 10 A-h, a discharge current of 1 A should deplete 

the battery in 10 hours, much as a 10 A discharge would in 1 hour. However, these expectations 

can be extremely inaccurate due to the nonlinear behavior of available capacity as a function of 

discharge current (see Section 1.3.5 below; in short, the higher the discharge current, the less 

apparent capacity). This, in addition to the variability between manufacturers' definitions of 

capacity, make total capacity (and therefore, remaining capacity in a partially discharged battery) 

a tricky thing to measure.

In the world of automotive batteries, manufacturers will specify a reserve capacity, in 

units of minutes during which a fully-charged battery can be discharged at 25 A without the 

terminal voltage dropping below 10.5 V [8]. At this voltage, the battery is treated as completely 

discharged. Conventions like this are more often battery manufacturer-specific rather than 

battery type-specific, but we are fortunate to have a uniform method for automotive batteries. 

Therefore, a battery rated at 90 minutes reserve capacity is defined to have a capacity of 37.5 A-

h: 25 Amperes · (90 minutes / 60) hours.

In research settings, a capacity test is done to quantify a battery's capacity. Such a test 

depends on the manufacturer to indicate how to best charge the battery to full capacity and for a 

minimum voltage under load. The battery is discharged at 10% of its rated capacity (.1 C, e.g., 5 

A for a 50 A-h battery) until the voltage reaches this minimum voltage (which may be designated 

fully discharged). The low current enables the capacity to be determined by simple multiplication 
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of the current with discharge time because it precludes the majority of nonlinear effects such as 

internal heating. Figure 1 gives an example. 

Figure 1: Example curve obtained from a laboratory capacity test
The voltage curve obtained by this test proves useful in understanding other battery 

effects because it represents how the battery's open-circuit voltage, the amount of potential-

carrying ions saturating the electrodes, evolves as the battery is discharged.

Notice the rebound in voltage that happens when the discharge current is cut off; this will 

be explained below.

1.3.3 State of charge
State of charge (SOC) is simply a measure of how much current the battery can deliver 

after partial discharge or charge. It is an extremely difficult quantity to determine reliably and 

precisely due to the many nonlinear effects that exist in batteries. A major topic of research in the 

field is accurate and precise state of charge estimation and much theoretical and experimental 

11



work has been done, without the problem being completely resolved. The term is introduced 

here, and will be brought up in subsequent sections as these nonlinearities are discussed, and a 

thorough literature review detailing its definition and estimation will be given in Section 2.2. 

A major result of battery research has been, however, that a lead-acid battery' open-

circuit voltage (no-load voltage in a relaxed state) is a linear function of its SOC [3]. Therefore, 

one of the most important aspects of a battery's operational behavior, the terminal voltage, is 

strongly influenced by state of charge, as is the amount of charge it can deliver before some 

threshold capacity is reached.

State of charge is a unitless number between 0 and 1, corresponding to percent. Note 

again that 0% SOC does not mean that the battery can no longer deliver any amount of current, 

only that the battery cannot go below this value without causing some kind of (possibly 

reversible) damage.

1.3.4 Surface charge
This is a major cause of nonlinearity in lead-acid batteries that does not exist in modern 

battery technologies such as nickel-metal hydrides. Surface charge refers to the phenomenon 

resulting from the plates comprising the positive and negative electrodes being of finite 

thickness; it causes a recently discharged battery to incorrectly appear to be dead (as indicated by 

terminal voltage) and a recently but incompletely charged battery to be fully charged ([9]). 

The electrochemical reactions that store or produce electricity happen only at the 

interface of the electrode material and the electrolyte. Therefore, when the battery is being 

charged, charge is accumulating at the surface of the electrodes, and must diffuse into the plates 

of the electrodes. This diffusion process is much slower than diffusion of charge-carrying ions 

through the electrolyte that separates the electrodes because it happens in a solid. 

Therefore, as a battery is charged, more and more surface charge accumulates; the higher 
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the charging current, the more surface charge accumulates. This causes the terminals of the 

battery to quickly reach a very high voltage, indicating that it is fully charged. Further charging 

will cause the battery to overcharge: the electrolyte will boil, the battery will vent, and the case 

may burst. However, if one allows the battery to relax for anywhere between 4 and 12 hours (we 

cite conventional mechanic wisdom here) and renew charging, the exact same pattern will repeat 

at the terminals of the battery. This is because the surface charge diffuses throughout the plate.

Conventionally, when a mechanic goes to check a battery's state of charge, she will allow 

it to relax for 4 to 12 hours, and then remove any surface charge by discharging the battery at 

approximately 33% of its rated capacity (or just 10 A) for 5 minutes. This will reduce the 

absolute SOC by 2% to 3%, but only the surfaces of the plates are discharged by this process. 

The majority of the charge remains locked inside the plates, after several hours of diffusion. 

Then she will allow the battery to relax for some 10 minutes and then take a terminal voltage 

reading and referring to a table. It is only after this process is done does the battery's open-circuit 

voltage linearly correlate to its state of charge. 

Note that the relaxation time required for surface charge to disappear is much longer than 

the time conventionally given to a battery to reach open-circuit (hours instead of minutes). 

Surface charge will be important when modeling the charging behavior of SLI batteries, but 

based on discussion with nickel-metal hydride battery researchers, does not appear in different 

chemistries and technologies. Be this due to more advanced design or different design 

requirements remains an open question.

The existence of surface charge explains why smart battery chargers will taper down the 

charging voltage as the battery approaches higher states of charge. Some will in fact cycle down 

(stop charging) before resuming charging at low currents to attain the last few percent of charge.

There exists after discharge the same effect, but in reverse. Immediately following 
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discharge, the surface layers of the plates have a much lower concentration of charged chemical 

species than deeper in the plate. It may take several before charge is evenly distributed through 

the electrode, and so a voltage measured just after discharge will sag lower than actual open-

circuit. This is sometimes called surface discharge.

Surface charge is not the only current-related nonlinearity of automotive lead-acid 

batteries. Another major effect is called the Peukert relationship between the battery discharge 

current and its remaining capacity.

1.3.5 Discharge current and the Peukert curve
The Peukert equation gives a relationship between immediately available capacity 

deliverable as a function of current. It is commonly modeled as

Q=K⋅I 1−n  (2)

where Q, capacity, is measured in Ampere-hours, K and n are the Peukert constant and exponent 

(characteristic battery constant and the battery discharge rate sensitivity exponent), respectively, 

and I the current in Amperes. In words, it states that as the discharge current increases, the total 

capacity of the battery (in Ampere-hours), or the total energy delivered by the battery, decreases 

disproportionately.
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Figure 2: The Peukert effect in Panasonic nickel-metal hydride batteries [11]
The Peukert equation is a simple empirical curve-fit, and the exponential does not model 

any physical phenomenon. An example set of curves for Panasonic's nickel-metal hydride 

batteries is given in Figure 2 to illustrate this effect. The higher the discharge rate, the less total 

capacity could be withdrawn from the battery.

The Peukert effect is attributed to lower reactivity of the lead-containing active mass at 

higher discharge currents at lower states of charge by [3], but has also also been traditionally 

attributed to increased inefficiency caused by thermal effects at lower SOCs, e.g., by [7]. 

An important connection may be drawn between the Peukert effect and the voltage curve 

obtained from a capacity test (Section 1.3.2). When one is operating a battery at some state of 

charge between 0 and 1, the steady-state voltage at the terminals of the battery will follow a 

curve similar to the capacity test's curve: a sharp nonlinear initial drop followed by piecewise 

linear decreases and finally a sharp knee at complete discharge. If one loads the battery at high 

currents, the Peukert effect will cause the apparent capacity to decrease, and in effect shift one's  
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position on the capacity curve to the right. This happens even at high states of charge, and must 

be accounted for if one hopes to estimate battery parameters from during discharge. This may be 

best illustrated by a picture, Figure 3. Note that the horizontal axis, time, can also mean for this 

curve state of charge. 

Figure 3: Effect of the Peukert relationship on steady-state discharge voltage
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It is conventional to cite a current in proportion to a battery's capacity, where a current 

equal to the magnitude of the rated capacity is called 1C, and a current twice, or half, the rated 

capacity is 2C and 0.5C respectively. The 'C' indicates the rated capacity (but will not be used as 

a variable below to avoid confusion).

1.3.6 Temperature effects
It is conventional wisdom that battery operation has a strong dependency on temperature. 

The chemical reactions of charging and discharging can be greatly affected by increased or 

decreased energy available in the form of heat. In Figure 4, [2] (p. 24.37) illustrates that higher 

temperatures result in greater terminal voltages as well as higher capacities (thereby indicating 

that there is a Peukert-like relationship between temperature and capacity as well).

Several numerical approximations for this relationship exist. One given in [3] is 

Q0 = Q0,25⋅1−25−T   (3)

where Q0,25 is nominal capacity at 25 °C in A-h, Q0 the adjusted capacity, α the battery's 

temperature coefficient, and T temperature in °C. However, with experimental data needed for 

every battery type, the usefulness of such empirical fits is limited; one may as well do capacity 

tests on one's battery type and fit the data to arbitrary precision or use a manufacturer's set of 

curves.
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Figure 4: Effects of temperature on lead-acid batteries' discharge 
profiles, (a) at C/20 rate, (b) at 340 A. 12 V 60 A-h SLI battery [2].

A more important facet of temperature effects is that, during charge or discharge 

operation, a battery will generate heat. This is due to the heat losses as current travels through 

non-superconducting electrolyte and conducting plates. Thermal runaway is a major fault mode 

in all batteries, where the internal battery temperature rises very quickly, damaging the battery 

and potentially its surroundings. This is more often than not caused during overcharging. The 

cell plate surfaces are fully saturated with charged ions and current forced into the battery by a 

dumb charger (versus a “smart” charger, with voltage-controlled current) simply heats the plates 
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and electrolyte. As shown next, this has an effect on how much one must recharge a battery after 

discharging it.

1.3.7 Efficiency
A battery, as an electrothermal system, encounters the same efficiency losses as all 

systems that deal with the laws of thermodynamics. When a battery is being discharged, the 

current seen at its terminals is downstream of all the electrothermal losses encountered, starting 

from the charge migration from deep inside the plates, to the plate-electrolyte interface, through 

the electrolyte to the terminals, and out through wire of a certain gage. Therefore, to have the 

battery reach the same state of charge as before one started, one must put back more current than 

one pulled out. 

Conventional wisdom (such that comes from mechanics and mechanic-oriented websites) 

states that automotive batteries should be recharged with 110% as much charge, in Ampere-

hours, for the battery to reach the original state of charge. This efficiency that penalizes charging 

current from fully contributing to state of charge is called the Coulombic or calorimetric 

efficiency [12]. It is, however, sometimes neglected in computation if a reliable method to 

determine state of charge is not extant to determine this value empirically, and if it has not been 

provided by the manufacturer. (See Section 2.2, which presents a review of state of charge 

estimation techniques.)

1.3.8 Aging effects
As may be expected, two fully charged batteries of the same make and model will have 

separate behavior under load (charging and discharging) depending on how they have been 

treated in the past. Quantifying the result of battery history on its present operation is a 

complicated matter, but one that has become an active field of research, both for older 

technologies such as lead-acid batteries (as automobile manufacturers attempt to reduce warranty 
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costs due to electrical system malfunctions) as well as newer ones, such as nickel-metal hydride 

batteries that are rapidly gaining importance due to their widespread application in hybrid 

electric and fuel cell vehicles. 

The research done for this thesis was a part of a larger thrust to perform diagnostics and 

prognostics on automotive lead-acid batteries; this lent itself very naturally to studying the aging 

effects of batteries. We will thus discuss the background of the present research task in order to 

understand what aspects of battery operation remained to be better understood, and then we will 

provide an overview of current literature on these subjects.

1.4 Motivations for research
Modern On-board diagnostics (OBD) involves the monitoring of the components and 

systems that are directly or indirectly impacting automobile emissions levels. Components that 

allow the diagnostics computer to monitor the states of other components are also themselves 

monitored. For example, if a catalyst monitor only activates in a certain engine speed range, the 

sensor that detects the engine speed must also be monitored for faults [13].

The sensors involved usually operate via thresholds or continuity (binary). Monitoring is 

done on a component-by-component basis. When faults are detected in individual components 

by measurements indicating deviations from certain pre-programmed acceptable ranges, [14] 

indicates that traditionally logic equations implemented using logic gate circuits or PLCs are 

utilized to: 1) generate a Diagnostic Trouble Code (DTC) and record it to OBD memory, and 2) 

turn on the Malfunction Indicator Light (MIL) on the dashboard.

These DTC codes are meant to subsequently be read by any repair technician with a 

standardized connector and off-board computer. However, the causes of any single DTC are 

myriad. A code has limited use in diagnosing the problem with the intent of fixing it. For 

example, if an oxygen sensor code is registered, it is deducible that it was caused by an off-
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voltage-range reading of an oxygen sensor in the exhaust process. However, it is not trivial to 

determine the cause of this, which may be something as unrelated as a vacuum leak. In another 

example, going over a pothole may briefly dislodge a weak battery connection experiencing 

corrosion or insulation fraying, registering an undervoltage. The problem is not reproducible by 

going over another pothole.

Also, an automobile mechanic cannot verify the proper functioning of any sort of 

integrated solid-state component. She can only ensure that the component is receiving a reliable 

voltage and has a good ground [15]. Therefore, repair shops or dealerships sometimes must 

resort to resetting the MIL, with the hope that the code was an isolated event, or begin replacing 

components in a bid to divine the cause of the repeating failure codes. This latter process of 

replacing parts is done at the expense of the auto manufacturers and comprises a significant 

portion of their short-term reducible losses.

Model-based diagnostics presents another method to monitor the overall state of a 

complex system such as the electrical network of a car. This involves accurately modeling the 

subsystems' dynamics and setting up a network of sensors that are conducive to the design of 

observers and estimators (of the Luenberger and Kalman variety) that determine the internal 

(non-measured) states of the plant while in operation [16]. A model of operation can therefore be 

built and refined continuously, adding a dimension of thoroughness and accuracy for diagnostics 

beyond rule-based OBD. This would allow the auto mechanic to determine not only what test 

failed but also from where within the system the failure originated. 

Aging models and capacity sensing for automotive lead-acid batteries can, in conjunction 

with observers and Kalman filters, add a further element of prognostics in automotive electrical 

systems, providing a car owner with information that may lead to preventative maintenance that 

prolongs the life and health of the battery. Therefore, model-based diagnostics and subsequent 
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prognostics are a bid to cut costs of automobile manufacturers, increase reliability of vehicles, 

and reduce ownership costs of consumers.

At the Center for Automotive Research (CAR), much industry-supported battery and 

vehicle management research is conducted, including characterization of batteries for use in 

conventional passenger vehicles, hybrid electric and fuel cell vehicles, as well as specialized 

vehicles such as garbage collection trucks or military vehicle platforms. It is therefore natural 

that the agglomeration of expertise in battery systems would be extended to automotive lead-acid 

batteries in passenger vehicles.

In order to bring the wealth of theoretical knowledge of model-based diagnostics to bear 

on these batteries, a robust model for the battery that captures all the elements to diagnose must 

be available. In the next sections and chapters, the effort to build this model will be detailed.

1.5 Thesis outline
This chapter has served to provide a broad outline of the characteristics of batteries that 

are well-known and relevant to the task at hand (outlined in the previous section). In the next 

chapter, the results of a literature review on battery modeling and fault diagnosis will be 

presented. Much of the chemistry involved will be restricted to this chapter, and so 

physiochemical bases of the models involved are scattered across it.

Chapter 3 begins with a section detailing the model structure chosen for this work, and 

outlines the experimentation required to complete the model. It then details the hardware and 

software setup that was brought to bear on construction of this complete battery model. This will 

serve as a manual to the entire methodology used for this study: software control of hardware, 

the data acquisition, filtering and analysis of acquired data, and parameter estimation and final 

curve fitting. 

Next, the actual results of this whole process will be provided in Chapter 4. Flaws and 
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discrepancies in the results will be discussed. 

The final chapter will contain some concluding thoughts, some guidelines for future work 

in this field, as well as a compilation of the nomenclature used in the thesis. This will be 

followed by the references in Chapter 6.
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2 Literature review
The research review in the area of battery diagnostics and prognostics identified three 

main topics.

The construction of a battery model to reflect all the characteristics of battery behavior is 

the foundational step in understanding what one can do theoretically for model-based 

diagnostics. Therefore, a review of models was made.

The estimation of state of charge remained a difficult task, and numerous attempts have 

been made to reliably construct a single method to do this. However, a single estimation 

structure does not exist that works for all battery chemistries and applications. Therefore, a 

review of state of charge estimation for lead-acid batteries is included here.

Finally, it becomes important to understand how batteries age in automotive vehicles 

today. The natural aging and fault modes were investigated and reviewed.

2.1 Battery modeling
The main approaches taken to battery modeling are:

• chemical modeling of the electrochemistry directly,

• a machine-learning approach traditionally involving a neural network,  and

• modeling with an electrical circuit with varying circuit parameters.

These models need to minimally provide an estimate of the terminal voltage, but to be at 

all useful, should give also state of charge, available capacity, and possibly some measure of 

state of health (that takes into account the aging of the battery). 

2.1.1 Chemical modeling
As the totality of battery behavior is the result of myriad fairly well-understood 

electrochemical reactions at a molecular level, it should be possible to quantify each each of 

these reactions with an equation and derive, bottom-up, a hyperfine description of the battery. 
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Such a model would use experimental data to identify the static parameters that it needs, and 

would subsequently derive all dynamic variables; this would not be a phenomenological 

description of the battery that one might build. 

Some of the chemical effects that would be modeled include [17] polarization, the 

voltage developed beyond the open-circuit voltage when the battery is charged or discharged. It 

comprises of the voltage potentials developed in the plates (activation polarization), across the 

resistive paths in the battery (ohmic polarization), and due to the transport of chemical species 

through the electrolyte (concentration polarization). 

The amount of charge extractable from an electrode depends on its activation rate, which 

may or may not be uniform, depending on state of charge, temperature, and current levels. If 

concentration of the charge-exchanging chemical species cannot be approximated as uniform, 

there are mass transport effects that must be accounted for. At all times, a measure of the 

capacity of the battery must be maintained, based on how much charge is stored in the plates.

As an example, [18] builds a physics-based model for nickel-hydrogen batteries that 

includes the majority of these chemical effects. The model requires twenty-nine parameters and 

constants to accurately represent relevant electrothermal effects, and reaches very high levels of 

accuracy. 

The primary disadvantage of this approach is that very few applications warrant the time 

and resources to empirically determine the many parameters and coefficients that such a physics-

based model needs, and indeed many of them (such as average specific heat of electrolyte) 

cannot be determined for sealed lead-acid batteries in a lab, let alone in a vehicle for battery 

diagnostics purposes. Therefore, this approach for modeling is rare in literature. 

However, the insights that a strong understanding of the chemical foundations of battery 

operation are extremely valuable in the development of equivalent models that do not model the 
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entirety of its chemical behavior. These insights are discussed in subsequent sections and are 

considered when choosing a battery model.

2.1.2 Computational intelligence-based modeling
An opposite school of thought holds that a battery comprises processes too complicated 

and interrelated to model individually, and seeks a data-driven heuristic approach to predicting 

battery behavior and state. To this end, computational intelligence techniques such as artificial 

neural networks and particle swarm optimization may be applied to experimental data to 

fabricate a nonlinear function that can describe the outputs of the battery. 

An artificial neural network (ANN) is generally the cornerstone of a computational 

intelligence model because this is the tool that can be trained on experimental data. The 

acquisition and selection of this training data is generally the most difficult process in utilizing 

an ANN. When training has been completed, ANNs' extrapolation and interpolation abilities 

outside and within its training set can vary due to its design (number of layers and neurons, local 

weighting function, etc.), which is another dimension of their use, beyond selection of training 

data. 

In [19], however, where the goal was to aid the design of batteries, the results were 

excellent. Given current-voltage profiles, the neural network was able to give excellent 

interpolation results. 

For some applications, such as design of batteries, or control of partially or fully electric 

vehicles, such a result is very worth having. For others, such as model-based diagnostics, a 

neural-network solution to battery modeling is less than ideal because it necessarily cannot 

describe the separate internal processes of the battery. For diagnostics and prognostics, we do not 

need to predict what the system will do, because we can observe this directly. We need to know 

why it is doing what it is doing, and therefore must seek out alternative modeling approaches.
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2.1.3 Equivalent circuit models
Between the low-level chemical modeling and the input-output heuristic-level modeling 

exists a compromise. It is possible to understand the chemical processes in the battery, and 

approximate their effects as the behavior of a lumped-model network of higher-level physical 

systems. In this section, we review a number of ways to reduce complex chemical phenomena to 

well-understood and well-behaved electrical-level circuit elements in creating a model.

In [21], many of the short-time and long-time processes inside batteries are identified and 

modeled. Figure 5 both lists the major dynamic processes inside batteries, and shows typical time 

scales on which they operate. An appreciation of these scales will be very useful when creating 

and using battery models. 

The long-term processes such as irreversible aging, some reversible effects such as minor 

sulfation or acid stratification, and cycling processes vary greatly from battery to battery due to 

their dependence on how the battery is used. These effects are desired to be quantified for aging 

and prognostics studies of batteries and therefore must be domain-specific. The model proposed, 
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Figure 5: A listing of the major dynamic processes in batteries and their average time constants 
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however, is not directly intended to model these effects but instead the shorter-time processes of 

mass transport, electric double-layering and charge storage, and electromagnetic processes. 

The technique of electrochemical impedance spectroscopy (EIS) was used here to 

observe these processes. This technique is another major topic of ongoing research for it may 

yield not only excellent battery models but may also allow predictive estimation of the states of 

the battery with respect to aging and other extremely long-term effects (viz., [22]). The technique 

has excellent primers elsewhere ([23]), but a briefly, the technique involves performing a 

frequency sweep of a complex system to compute its complex impedances using the amplitude 

and phase differences of the input and output signals. These complex impedances are then fit to a 

number of possible circuit models using least-squares, etc. 

On the time scale of seconds to hours (that is, from requesting current to dissipation of 

surface charge, Section 1.3.4) are mass transport effects. There exist two modes of transport for 

chemical species: diffusion due to chemical gradients is the more important one, but migration 

due to electrical fields also plays a secondary role. It is at this level that temperature plays a key 

role, by determining diffusion rates. 

At a semi-infinite diffusion layer, such that is formed by a planar electrode surrounded by 

electrolyte in a lead-acid battery, the impedance is a Warburg impedance, a term whose 

popularity is growing with EIS'. The Warburg circuit element has a complex nonlinear 

impedance given by:

ZW=



− j 

  (4)

where σ is the Warburg coefficient, and ω the angular frequency.

Diffusion processes occur in the active mass, the porous electrode, and in free electrolyte. 

They can be modeled using RLC elements either as a series of T-circuit ladders, as shown in 

28



Figure 6 and whose mathematics can grow unwieldy, or can be lumped into a Warburg 

impedance.

On a faster level is the double-layer capacitive effect, which many models stop at. This 

useful idea derives from the fact that charge must move from the solid electrode to the liquid 

electrolyte by crossing a charge-free region. This naturally warrants a capacitive description. A 

single layer turns out to be overly simplistic, as generally more than one of these capacitive 

layers form side-by-side: one right at the electrode-electrolyte interface and another beyond it. 

Figure 7 shows that this effect can be reduced to a simple electrical equivalent circuit. The 

parallel circuit parameters vary by state of charge and temperature, and even battery age and 

current levels. (The series element is an ohmic resistance, discussed shortly.) Additional effects 

happen in this range when an electrode is porous (to maximize surface area, as is the case in 

automotive lead-acid batteries).
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Figure 7: Equivalent circuit modeling double-layer capacitive effects [21]
The highest frequencies are the ranges at which electric and magnetic effects manifest 

themselves. Here, ohmic losses cause instantaneous voltage responses when current is applied to 

the battery. These are modeled by resistances. Furthermore, the battery is comprised of 

individual cells connected in series, which can be modeled as series inductances. There can also 

be an interelectrode capacitance, all of which are shown in Figure 8, an equivalent circuit model 

of the high-frequency effects of the battery.

Figure 8: Equivalent circuit modeling high-frequency effects
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All these equivalent circuit models were derived from a first-principles understanding of 

the physiochemical processes occurring inside the battery. They lend themselves very naturally 

to be fleshed out, and their circuit element values identified, using EIS. The model is more useful 

in its theoretical depth than practical implementation, and is considered in this section on 

electrical circuit equivalents instead of a previous one on chemical modeling only because the 

circuit parameters can be quickly identified by EIS software in the laboratory. However, such 

software and hardware is not available aboard a vehicle.

In [20], on the other hand, three lumpable chemical processes are identified as the 

primary ones for battery dynamics:

1. ionic charge and electronic charge conduction, the former through the electrolyte in the 

pores of the active mass and the latter through the active mass itself,

2. electrochemical reaction at the interface of active mass, including electron transfer, and

3. movement of charged or uncharged chemical species via diffusion into and out of the 

reaction zone.

These processes combine in a manner that are described by partial nonlinear differential 

equations. However, it is pointed out that each of the physical processes can be modeled for a 

certain state of the battery using lumped circuit elements such as resistors and capacitors, and 

transmission lines for distributed ones. If the parameters of these circuit elements, and the 

steady-state open-circuit voltage, are identified for a variety of discharge states (making them 

nonlinear), then the model may be subjected to arbitrary current loads and yield good results at 

acceptable computational expense. 

The final circuit model is reproduced in Figure 9, where: Rser is the resistance of the 

separator and current collectors, ρ is the distributed resistance of the transmission line modeling 

electronic and ionic resistance of the active mass, Zs is the combined impedance at the surface of 

the active mass where the reaction is occurring, and includes the sub-elements associated with 
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charge transfer and passivation layer resistances Rct, the double layer capacitance Cdl, diffusion 

and charge storage inside particles of active mass represented as a generalized Warburg 

impedance modeled as a finite-length transmission line, and Cs representing additional charge 

storage.

Figure 9: Universal battery model equivalent circuit [20]
The identification of these circuit parameters at varying states of charge is done using 

electrochemical impedance spectroscopy, and further nonlinear least-squares fitting to separate 

some variables.

The two circuit models presented here represent a very large number of possible effects 

to model and a variety of ways to model slightly different and distributed processes. Between 

these and the simplest model, comprising a static voltage source and resistor, many others can be 

derived, consisting of many circuit elements offering to model this or that effect. Excellent 

overviews of such models are available in [10] and [3]. From the latter is Figure 10, showing 

some common ones. One element that is missing from these circuits, however, is an open-circuit 

voltage source (see Section 2.2.5 for some real-world models used for battery state estimation). 

This represents the stiff center voltage of the battery around which all charging and discharging 

terminal voltages oscillate around.
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Figure 10: Several electrical circuit equivalent battery models
In the end, one must consider the battery in question, its chemistry, design parameters, 

and intended use, perform necessary experimental validation and choose a model (or turn to 

previous work done for the same type of battery). When one intends to do vehicle-based model-

based diagnostics, a model that can provide the information needed with minimal measurements 

is needed. One such piece of quantity that is always valuable in battery diagnostics is state of 

charge estimation. Some of the copious amounts of literature on this topic will be reviewed next

2.2 State of charge estimation
[24] presents a fairly complete overview of the various methods of SOC estimation that 
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have been reported. Many of these techniques are easy to understand, and others are more 

theoretical (such as the Kalman filter) or involved (EIS). However, all but the most simple utilize 

some kind of model, specially constructed with the hope that some of its parameters or outputs 

will have some bearing on the battery's state of charge. 

The subject has received much research interest because of its importance in diagnostics 

as well as hybrid electric and fuel cell vehicles. Batteries are designed to be operated at specific 

states of charge, and permanent damage can result due to improper management. Although 

automotive SLI batteries cost between US$70 and $100, HEV batteries cost several thousands of 

dollars and care must be taken to monitor their SOC under operation. 

2.2.1 Discharge test
The only fully reliable method to measure a partially discharged battery's state of charge 

is to discharge it until it reaches 0% SOC. The problems with this method are obvious, but this is 

the only way to perform capacity tests (Section 1.3.2), etc.

2.2.2 Current integration
The next approach uses the definition of capacity, the Ampere-hour. Counting the amount 

of current that enters or leaves the battery should allow good estimation of SOC, one would 

think, according to the equation:

Qt =Q0−


Q0
∫
0

t

I Bt dt  (5)

with Q being the variable for SOC, Q0 the nominal capacity in Ampere-hours, t the indepdent 

time variable in hours, η the Coulombic efficiency (Section 1.3.7), and IB the battery current, 

with negative defined as discharge.

There are two main drawbacks to this method. First, measurement error will invariably 

cause drift in estimation unless one is very certain of what one's loads are, at all times. Secondly, 
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the charging efficiency η must be determined for the battery, and may be a function of any 

number of parameters, and minimally the direction of current. [24]  gives an alternative form of 

the above equation:

Qt =Q 0− 1
Q0
∫
0

t

 I B−I loss d   (6)

Iloss here is taken to be known: the amount of current that does not reach the electrodes 

due to path losses.

2.2.3 Open-circuit voltage
It is well-known by mechanics that the battery's open-circuit voltage is a linear function 

of its SOC, and manufacturers have long disseminated tables identifying this trend. However, 

there are two caveats accompanying this satisfying result: open-circuit voltage must be read 

without surface charge (Section 1.3.4), and after the battery has relaxed from any charging or 

discharging activities. 

2.2.4 Measurement of electrolyte specific gravity
Another (formerly) very common method of determining a car battery's state of charge 

was to use a hydrometer and measure the electrolyte specific gravity. Recall that the battery 

discharge equations consume sulfuric acid and convert it to H2O, and so the electrolyte in a 

highly discharged battery is almost entirely water (which is why one must never leave a lead-

acid battery at deep levels of discharge: not only will the lead sulfate crystallize, but the water 

will corrode the metallic grids and electrodes). 

Water has a specific gravity of 1.0, whereas sulfuric acid is about 1.280 [37]. The 

relationship between the electrolyte specific gravity and SOC is also linear, but the usefulness of 

this for a sealed maintenance-free battery is nil.
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2.2.5 State estimation (Kalman filtering)
The majority of literature on state of charge estimation perform some sort of state 

estimation based on a model to identify battery SOC. (E.g., [25], [26], [27], [28], [29], etc.) It is 

in this approach that the selection of a model becomes of vital importance. Conventional 

methods of state estimation rely on the theory of Kalman filtering (KF).

These approaches rely on there being a linear or nonlinear model of the system's states 

and outputs. Linear systems may contain states that are unmeasurable but nonetheless estimated 

based on the system's measurable outputs and inputs. Kalman filtering theory presents a method 

of constructing such state observers which minimizes the mean-squared error between estimates. 

The same applies to nonlinear systems, but the theory becomes less rigorous and one must go to 

an extended Kalman filter (EKF) or to a totally different approach to state estimation, such as 

particle filtering. One may consider parameters of a system “states” if one goes to a nonlinear 

model, and thus extended Kalman filtering may be used to do both state and parameter 

estimation. Copious details of the glorious topic of estimation are available in [30] and [31].

[25] utilizes a circuit model shown in Figure 11 and constructs an observer to estimate 

the open-circuit voltage of the battery, given measurements of battery current and terminal 

voltages. The estimated open-circuit voltage is used to provide a SOC measurement, due to the 

linear relationship between the two. The nonlinear time-varying (NLTV) circuit model was 

reduced to a linear time-varying (LTV) system that depends on only one state variable, and 

furthermore the work proves that the open-circuit voltage's estimate will asymptotically converge 

to the actual value without requiring estimation of the circuit parameters. For purely SOC 

estimation, the procedure serves very adequately, but is no complete solution for diagnostics 

precisely because it avoids estimation of any other parameter of the battery.
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Figure 11: Circuit model utilized in [25]
In [26], however, a set of observer are designed to estimate both state of charge as well as 

state of health (SOH) by modeling the charge-storage functionality of the battery as a bulk 

capacitor. The way this bulk capacitor's value varies with time can yield insight into the battery's 

state of health, or how much charge it can generally store. 

The equivalent circuit model is shown in Figure 12. The SOC is estimated, similar to 

[25], by utilizing a Kalman filter to estimate the voltage across the bulk capacitor, VCb. The state 

of health quantification comes from utilizing an extended Kalman filter to estimate the actual 

value of this bulk capacitance, Cbulk. 

Figure 12: Equivalent circuit model built by [26]
This work, unlike the [25], does need parameter values for the remaining circuit 

elements, and these were experimentally determined. However, beyond the states being 
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estimated, all other circuit parameters remain static. Therefore, the method does not allow for 

online determination of the other states of the system other than SOC and SOH.

However, one can clearly imagine combining some of the methods outlined in the 

previous section on battery modeling (Section 2.1) with some of the state estimators that are 

available in literature in order to obtain both accurate representation of the battery's behavior as 

well as some internal parameters such as SOC and SOH. This thesis will utilize an equivalent 

circuit similar to, but simpler, than these (detailed in the next chapter), but first we will discuss 

further ways of doing SOC estimation.

2.2.6 Electrochemical impedance spectroscopy
Many results of attempting to use EIS to measure state of charge have been gathered in 

[24], and need not be repeated here because of the great variability in the reports of success. The 

issue with using a Nyquist plot for this narrow purpose is that one must interpret it correctly. The 

interpretation is necessarily correlative. The problem may be further clarified by showing what 

the results of EIS look like. In Figure 13, Nyquist plots of a polymer lithium ion battery at 

various states of charge are shown. There has been no clear way to interpret these curves to yield 

useful SOC information. This is contrasted to state estimation, whereby a state that was closely 

related to SOC could be estimated.
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Figure 13: Nyquist plot of a battery subjected to EIS analysis [21]

2.2.7 Coup de fouet
There exists for lead-acid batteries only a phenomenon that causes the terminal voltage to 

dip in the first few minutes of a discharge that follows a full charge. This dip is called the coup 

de fouet, and is shown in Figure 14, [32]. Although the effect was explained at least by the mid-

60s [33], only in the late 90s was it realized that one could determine reserve capacity of a 

battery using the coup de fouet, and much research was sponsored in the area by 

telecommunications companies. (A major use of batteries is backup power supplies for telecom 

and datacom installations.) 

The coup de fouet may be applicable to automotive batteries as well, but has not seen 

much use because, although in general a car battery can be said to be at full charge after being 

driven for some time, a constant discharge current is not practical in a car. The engine will be 

started with a very high current pulse lasting less than a second, there will be an inrush as the 

alternator reaches steady state, and then the battery will reach a quiescent state of charging; not 
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much time for a discharge test as required by the coup de fouet. However, the technique may still 

be applicable in the lab to test for aging and other state of health parameters.

Figure 14: The coup de fouet in a Hawker 2HI275 cell discharged at 275 A at 20 °C [32]

2.2.8 Conclusion
A review of state of charge estimation allows us to gain a further dimension in 

understanding battery modeling for various applications, as well as a chance to see some models 

at work, such as those presented in state estimation. Some of the concerns regarding the practical 

utilization of these models can be appreciated as they need to be implemented online in various 

environments.

The last major topic that was reviewed pertains directly to battery diagnostics and 

prognostics and involves the aging and fault modes specifically present in automotive lead-acid 

batteries. 

2.3 Aging and failure modes
This section will discuss the findings of a review of literature on the ways batteries age 
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with use. These involve natural fault modes that can be avoided only by not using the battery and 

so are always present, as well as service life faults that are caused by misuse of the battery. There 

will be almost no mathematical equations in this section; there is very little quantitative analysis 

done on the subject, as this would require a large sample of partially aged and failed batteries, 

and this is not feasible for the many chemistries and usage environments that exist.

A battery is conventionally considered to be dead if its available capacity drops below 

80% of its nominal capacity (presumably when it was new). Recall that such a capacity is 

measured by a capacity test (Section 1.3.2), which involves nominally a 10 hour discharge at 

0.1C. Such a test may not properly reflect some fault modes such as sagging voltage, but will 

adequately measure the most important characteristic of the battery: its ability to store and 

deliver charge.

While the literature on battery aging identifies numerous fault modes, that is, internal 

changes to the battery caused by (mis)usage, according to [34], all of them manifest themselves 

to the external user as one of two effects:

1. Decrease in capacity, and

2. Decrease in power delivery due to internal resistance.

With these two indicators in mind, we can examine some of the most common aging 

effects in lead-acid batteries.

The primary unavoidable aging effect is corrosion of the positive grid, composed initially 

of metallic PbO2, and is probably the most important factor for calendar life [1]. This effect is 

also called grid growth because the electrode physically expands. [35] gives details on how the 

design of VRLA batteries can impact this fault mode, and [36] on the chemistry of the process. 

In a nutshell, although we say that the positive electrode is composed of PbO2, this lead dioxide 

forms a dense corrosion layer around the metallic lead in the positive electrode when fully 

charged. This layer shrinks and expands during discharge and charge, and as it becomes fixed in 
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a state of permanent corrosion, the grid is said to be corroded.

When this fault mode is activated, the life of the battery may be terminated by complete 

oxidation, or more often by the positive grid making contact with the negative top-bar of the 

battery, forming a short circuit. Through either of these two specific modes, grid corrosion is 

usually the cause of death in SLI batteries [36], because they are usually kept at float charge, and 

manifests itself as the second fault effect, that of increased internal resistance. However, another 

fault mode, the deterioration of the active mass on the positive electrode, is active in vehicles that 

experience heavy cycling.

Degradation of the positive active mass is due to the precipitation of PbSO4 back to PbO2 

during charging will cause a morphological shape change in the latter because PbSO4 crystals 

have much higher volume than PbO2 [36]. As this shape change becomes more and more 

pronounced, the lead dioxide particles lose coherence and shed from the positive plate. This is 

more aggravated in batteries experiencing heavy cycling, and manifests itself as a decrease in 

capacity. (Interestingly, the negative plates are generally immune to corrosion and active mass 

deterioration [35].)

A third major aging mechanism is sulfation, and has many meanings among the user 

community, such that it is the sole topic of [37]. Recalling that the active mass at both electrodes 

reacts and becomes PbSO4 during discharge, the danger of it crystallizing into an 

electrochemically inactive form (not reversible to form lead and lead oxide) is always present. 

This used to be the scourge of battery designers and users for years but as charging regimes 

become more streamlined in vehicles, the occurrence rate has also declined. 

This fault mode strikes when the battery is either allowed to remain at open-circuit for 

long periods of time, or at a deep level of discharge. It is aggravated by elevated temperatures. 

Appropriate charging rates and intervals can keep this problem at bay, but when it occurs, it 
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reduces the capacity of the battery. There exist numerous commercially-available products that 

claim to reverse sulfation [38]–[40], by applying a distinctive sinusoidal or pulsed current 

charging profile, but there is only scattered evidence that they actually work.

There exist several other fault modes that operate ancillary to these three prime ones. 

They have been detailed in the papers cited here, and include:

1. Agglomeration of fine lead particles at the negative electrode.

2. Loss of electrolyte.

3. Loss of water (hydrogen evolution at the negative electrode, accompanies gassing during 

overcharge).

4. Inter-cell connector failure.

5. Short-circuiting.

6. Electrolyte stratification.

However, all these effects seem to manifest themselves as some form of capacity 

reduction or resistance increase. With this in mind, and with the models and state estimation 

techniques studied in this chapter, we may move on and discuss the equivalent model chosen for 

this study, and the experimental methodologies to characterize the battery.

43



3 Battery model and experimental methodology
In this chapter, the dynamic battery model that was used will be introduced and explored. 

It has been used in some of the work presented in literature (e.g., [29]) as well as much of the 

battery research done at the Center for Automotive Research (CAR). 

With the model chosen, the need for experimental characterization remains and a fairly 

thorough overview of the experimental bench that now exists at CAR and that was used for this 

study will be given. This will include the hardware as well as software control and some 

analysis.

The methodology utilized in modeling 12 V lead-acid batteries will then be detailed. As 

all practitioners of battery engineering know, the equations and values provided by models have 

great variability. Data obtained from one battery test will yield parameters that may differ greatly 

from data obtained from a slightly different test. Therefore, exact methodology is very important 

to give end-users of battery models sufficient insight into the domain of their models and when 

they may no longer apply, and to compare variations in models.

3.1 First-order triple-state dynamic equivalent circuit model
An equivalent circuit model is the only type of model that is amenable to both simulation 

as well as fault diagnosis and dynamic system analysis. However, as the three major variables 

that pervade and strongly influence battery behavior are terminal voltage, state of charge (SOC), 

and temperature, and only one of these is a strictly electrical value, the model must include 

dynamic state equations for SOC and temperature. 

This is however a non-issue because, 1) thermal system dynamics are extremely similar 

to electrical ones (the differential equations have the exact same form), and 2) it is possible to 

express SOC as an integral equation. The latter, however, requires that we use current integration 
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as our SOC estimator. For much of the simulation and diagnostic work in the lab, this was 

deemed acceptable.1 

The model therefore comprises three subsystems: the electrical system, the thermal 

system, and the SOC estimator. Figure 15 gives a schematic of this.

Figure 15: Triple-state battery model with three distinct subsystems
Inputs to the model are the battery current, and the output is voltage. This model was very 

useful for stand-alone simulation purposes. However, as work progressed, it was realized that 

diagnostic work would be made much simpler, given an unrestricted sensor set, if the 

temperature of the battery could be measured. This yields a model with once again three states 

but with an additional input and one less subsystem, as in Figure 16.

1 However, it is of vital importance to appreciate the low probability that one could get a current sensor in a 
production vehicle: there are problems whether one imagines a current shunt (a precision resistor, the voltage 
drop across which is measured) or a current clamp (a Hall effect sensor) approach given today's stratified auto 
production procedures.
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Figure 16: Triple-state battery model with two inputs and two distinct subsystems

3.1.1 Electrical model
Whether temperature is considered an external input (for diagnosing other internal 

parameters) or a state variable (during stand-alone simulation of battery behavior), we cannot 

describe it quantitatively without discussing the electrical model, which is presented in Figure 

17. The electrical model captures first-order dynamics of the battery under load because of one 

memory element, the capacitor. 

Some notes:

• All the circuit elements in the equivalent circuit model are assumed to vary as some 

function of: SOC, temperature, current magnitude (which includes direction of current, 

charging or discharging), unless they are found experimentally not to vary.

• Current direction is in the circuit shown in Figure 17 defined to be negative for charging, 

and positive for discharging.

• The capacitor voltage Vc is the only state of the electrical submodel. The input is the 

current IB and the estimated circuit element values; the output is the terminal voltage VB.
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Figure 17: Equivalent circuit model of electrical system with variable 
parameters

For this first-order electrical model, Kirchoff's current rule yields:

E0− I B R0−V c−V B=0  (7)

Capacitor voltage Vc is a state with the following differential equation:

V̇ c=
1
C1

I B−
1

R1C1
V c  (8)

which is an ordinary first-order differential equation with the solution being

V c t =V c 0e
− t

R1C 1R1 I B1−e
− t

R1C 1  (9)

Combining this result with the battery terminal equation yields the following for terminal 

voltage:

V B = E0 − I B R0R1   I B R1−V c 0e
− t

R1C 1  (10)

This equation may be applied to four different situations, which can be referenced against 

an example current-voltage profile shown in Figure 18. These relationships become important 

when performing parameter estimation based on experimentally obtained input-output current-

voltage curves. 

• t → ∞, IB = 0
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V Bt∞=E 0  (11)
V c t∞=0  (12)

• t ≠ ∞, IB = 0

V Bt =E0−V c0 e
− t

R1 C1  (13)

• t ≠ ∞, IB ≠ 0, Vc(0) = 0

V B=E0−I BR0R1I B R1 e
− t

R1C 1  (14)

• t ≠ ∞, IB ≠ 0, Vc(0) ≠ 0: the complete equation returns.

V B = E0 − I B R0R1   I B R1−V c 0e
− t

R1C 1  (15)

Figure 18: Example of a discharge-charge test cycle
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3.1.2 Thermal model
With an electrical model, it becomes easy to construct a first-order thermal model. Heat is 

produced by current flowing through the lumped resistors, and is dissipated by a simple first-

order term representing convection out of the battery or into a cooler electrolyte. The differential 

equation representing heat flow is:

mc d T
dt

= R0⋅I B
2R1⋅I B , R1

2  − hAT −T∞  (16)

with mc being the battery's specific heat in J/°C, hA the heat transfer rate in W/°C, and IB,R1 being 

the current through the R1-leg of the parallel branch. 

The thermal parameters are obviously extremely difficult to precisely quantify, but a 

benefit of using a lumped thermal model such as this is that overall effects can be approximated 

to a first-order exponential. Nominal values of both the specific heat and heat transfer rate can be 

obtained by looking at sample values of resistance and temperature changes accompanying 

currents. With experimental data, more exact values can be obtained.

3.1.3 State of charge model
As explained above, the SOC estimation method for the model chosen was current 

integration. This method simply counts the charge entering and leaving the battery:

Qt =Q0−


Q0
∫
0

t

I Bt dt  (17)

The calorimetric efficiency η may be determined by discharging the battery a known 

amount, recharging it at the same current level for the same amount of time, and measuring state 

of charge using open-circuit voltage. It will be necessary to account for surface charge after 

charging to ensure that the open-circuit voltage will correctly reflect the SOC.

3.1.4 Complete model
Over the window of time that the circuit element values remain constant, this presents a 
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linear time-invariant system that is easily analyzed using ordinary methods of system theory. 

Now, after we have presented a literature review as well as the final model chosen to 

characterize the battery for, the main work of this thesis, parameterizing these circuit elements, 

will be elucidated.. The design and execution of experiments, as well as data analysis procedures, 

will be detailed shortly. First, the equipment available will be described.

3.2 Experimental equipment
The experimental tasks for battery modeling involve placing current profiles upon the 

battery, and measuring the temperature and voltage responses. An experimental test bench had 

been previously assembled for the study of supercapacitors at CAR in 2004 [4], and this setup 

was enhanced for the present study.

3.2.1 Hardware
The experimental hardware setup comprises of the following:

• Environmental chamber capable of maintaining temperatures between -40 and 100 °C.

• Chroma 63201 2.6 kW programmable electronic load, capable of drawing 300 A at 80 V.

• PowerTen 10 kW electronic supply (source), capable of delivering200 A at 50 V.

• A custom-built signal conditioning box to scale and filter analog signals.

• National Instruments SCXI chassis containing a thermocouple amplifier board and a 

feedthrough module for analog and digital I/O.

• National Instruments PCI DAQ card (in a desktop PC) that interfaced all digital and 

analog I/O to 

• the desktop PC, which samples sensor data and outputs all electronic control commands 

to the supply and load.

There are three sets of sensors that monitor the state of the battery and hardware:
• a voltage sensor takes a reading from cables connected to the terminals of the battery, and 

is normalized to be between 0 and 50 V in the signal conditioning box.

• A 500 A Hall effect current sensor that measures the current through the cable connected 

to the positive battery terminal, and

• connections for up to 40 thermistor temperature sensors, three of which were employed to 
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measure the temperatures of the positive and negative terminals and of ambient air. 

Temperature measurements in an automotive lead-acid battery may be problematic as all 

of them today are valve-regulated batteries, and are sealed and maintenance-free. Usually a fairly 

thick plastic container forms the outer shell of the battery, making it somewhat unclear what 

exactly comprises a lumped battery temperature. Noting, however, that the construction of a 

battery involves thermally conductive materials connected to its terminals, the terminal 

temperature may be taken as a valid temperature.

Figure 19 shows the electrical circuit of the assembly, and Figure 20 explains the flow of 

both control signals and data. Component and connection details (especially regarding the signal 

conditioning box) have been thoroughly elucidated in [4]. 

Figure 19: Electrical schematic for experimental setup (note the battery 
isolation relay, added for the present work)

The major hardware additions to the setup from [4] are the more powerful Chroma load 

with RS232 control (the previous one was limited to 600 W and used analog voltage control), 

and a battery isolation relay-controlled contactor to isolate the battery. The latter was done 

because when 0 A was commanded from the load and the supply, the load would draw 0.15 A 

and the source would inject between 0.15 and 0.4 A into the battery. The solid-state relay is 

controlled via a digital output from the PC, and triggers the high-current electromechanical 
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contactor switch upon request. 

Figure 20: Experimental bench data flow (analog and digital inputs and outputs)

3.2.2 Software
The software controlling the system involves MATLAB and LabView (from The 

Mathworks and National Instruments, respectively). Matlab is used to create control command 

files for the hardware. These files are input to a LabView visual interface (VI). The VI, in a 

nutshell, controls the electronic supply, load, and battery isolation relay, while simultaneously 

collecting current, voltage, and temperature data into an ASCII text file. The VI was extended 

beyond that of [4] in order to perform RS232 control of the new load (see the previous section on 

hardware) and to isolate the battery when it was not being charged or discharged.

The VI can accept any sample rate. 320 Hz was chosen as an optimal between noise 

immunity and PC speed. (This rate is extremely high and allowed significant amounts of noise to 

enter the system.) The actual use of the software will be detailed in an appendix that will be 
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deposited with the Battery group at the Center for Automotive Research, and will not accompany 

this thesis. 

3.3 Battery modeling methodology
Recall from Section 3.1 that the battery model is an LTI system over a window of time 

for which the electrical circuit elements remain constant (the battery SOC and temperature may 

vary over this window, because they are dynamic states of the system). In this section, the 

experiments done to uncover the values of these circuit elements at different operating points 

will be detailed.

3.3.1 Experimental methodology
Using the experimental bench described in the previous section, the battery was subjected 

to a sequence of discharge pulses, designed to remove 5% of the SOC from the battery to 50% 

SOC, and followed by a similar sequence of charge pulses to take the battery to nearly 100% 

SOC. The pulses comprised a set of step voltages, constructed as per Figure 21. The voltage 

responses to the sequence of increasing step inputs, followed by relaxation, can be analyzed to 

yield the circuit values at various SOCs and temperatures, as illustrated in [41], and derivable 

from the analysis from Section 3.1.1, and as detailed in the next section. This was repeated at 

multiple temperatures. The data was sampled at 320 Hz. With this serving as introduction, a 

detailed methodology will be presented.
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Figure 21: Construction of one current pulse for parameter estimation
The first step in constructing the current profiles to yield the circuit parameterization 

desired is deciding the independent variables of the model, and the domain over which they need 

to span. As Section 3.1 described, the model's circuit parameters are expected to vary with state 

of charge, battery temperature, and battery current (direction being important ― the values are 

expected to be different when charging and discharging). The domains are given in Table 1.

Table 1: Restriction of battery model's domain

Variable Minimum Maximum Resolution

Charge current 0 A 20 A Nsteps = 6 steps

Discharge current 0 A 80 A Nsteps = 5 steps

State of charge 50% 100% 5% increments

Temperature 5 °C 35 °C 5, 20, and 35 °C

The charging current was restricted to maximally 20 A because initial data acquired from 
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a commercial passenger car indicated that a properly functioning alternator and voltage regulator 

rarely charges a battery above 10 A after cranking. (Immediately after cranking, the alternator 

can dump up to 45 A into the battery, but this is for less than 15 seconds.) 

An important aspect of charging profiles was that the LabView VI would cut off charging 

current for one set of plateaus if the battery voltage rose above a set point of 14.5 V. That is, as 

one set of plateaus (comprising one “pulse”) was progressing, if the battery voltage rose above 

14.5 V, that set of plateaus would be terminated until the current requested 0 A, after which the 

desired current profile would resume. This was done to simulate the fact that in a vehicle, the 

voltage regulator will modulate charging current to maintain the battery at such a set voltage 

(although in the vehicle, this varies by temperature). This is very important to avoid 

overcharging the battery and causing it to vent, but does have some ramifications for 

parameterization: we will not have circuit parameters for high charging currents at high SOC.

The discharging current was restricted to 80 A because one of the tasks of the battery is 

to provide support for a failing alternator. An average size for an alternator is 80 A. In normal car 

operation, however, the battery almost never sees currents this high for more than a few seconds, 

as the alternator field control detects the drop in voltage accompanying battery discharge and 

produces more current.

Because state of charge increments of 5% was deemed sufficient resolution to adequately 

characterize the battery, the resolution of current (both charging and discharging) was chosen to 

preclude extremely lengthy test times. It had been our experience that during very lengthy 

current profiles (more than 3 hours), the probability that the personal computer would encounter 

a software malfunction increases, and anomalies begin creeping into the acquired data (such as 

oddly varying voltages that are impossible in real life, such as battery voltages sagging by 1 V 

for 15 seconds during a capacity test, etc.). One of the major points of incompleteness of this 
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thesis is that the battery was not more finely characterized at lower currents, where more details 

could be observed, and where the battery spends most of its time.

(Note that during cranking, the battery will see discharges of more than 600 A for a few 

seconds. Unfortunately, this exceeds the capacity of the electronic supply, and there isn't a safe 

way to extract this much current from the battery for a controlled period of time. However, 

diagnostics can be restricted to post-crank operation of the vehicle, so this point was not deemed 

as terribly critical.)

After an initial set of battery tests at 25 °C, it was noticed that the battery temperature (as 

measured at its conductive terminals) changed little over a 1 hour sequence (jumping up some 4 

°C during discharge, and overall less than 1 °C from ambient). Therefore, to characterize the 

battery at nominally “cold” and “hot” temperatures, a ±15 °C test regime was adopted.

Figure 22: Example current profile, with three secondary experimental variables
With these conditions determined, a current profile such as the one in Figure 22 was 
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constructed. Three remaining parameters for experimentation remain to be described:

• Initial rest: this is a minor time, to ensure that enough samples of the starting voltage 

have been collected. This was chosen to be either 200 or 60 seconds.

• Inter-plateau rest: chosen to be 200 seconds for both charging and discharging curves, 

this is needed for the open-circuit voltage to settle. 200 seconds is on the lower end of 

adequate for discharging at these currents, but proved to be inadequate during charging. 

Open-circuit voltage had to be estimated using curve-fitting techniques.

• The plateau time is computed directly from the amount of SOC to remove from the 

battery. For charging sequences, each current plateau was held for 100 seconds, and for 

discharging, 30 seconds.

This made total charging and discharging experimental test times 117 minutes and 53 

minutes long, respectively.

Once these current profiles had been constructed in MATLAB, they were exported to the 

Labview VI for executing. This process consisted of the following steps.

1. Using a commercial car battery charger, the battery was charge to 100% SOC.

2. The battery was allowed to relax for 2 hours while soaking in the environmental chamber 

at a set temperature.

3. The environmental chamber temperature control was disabled (because it interfered with 

the temperature measurements at the battery's terminals), and the discharge sequence was 

initiated.

4. After the sequenced completed and the battery was at approximately 50% SOC, the 

battery was given another 2 hours to relax with the temperature control reinitiated.

5. The charging sequence was initiated (with the current .

6. Once the charging profile completed, step 1 was immediately executed for another 

temperature, or the batter was left overnight before resuming another run the next day.

3.3.2 Data analysis methodology
Three methods were investigated to extract circuit parameters from the input-output 

current-voltage curves at various SOCs, temperatures, and currents outlined previously. The first 

method, widely used [41], relies on solution of the circuit's differential equation assuming a step 

57



input. The voltage profile will therefore be an instantaneous drop across the series resistance R0, 

followed by an exponential curve that saturates at some final terminal voltage.

The problems with this method will be delineated in the following section. A parametric 

estimation method based on function minimization was subsequently utilized; this involved 

using the MATLAB function fmincon, in conjunction with a Simulink model of the battery 

differential equations modeling a simply LTI system, with a specified cost function (a specific 

norm between the experimental and simulated voltages). The technique requires a set of initial 

guesses for the parameters of the model (nominal values for open-circuit voltage, resistances, 

and capacitances) and nonlinearly iterates on the initial guess vector to find a set of parameters 

that minimizes the discrepancy between the output of the simulated model and the actual battery. 

This method is very sensitive to initial guesses, as in the previous method. (fminsearch and 

fmincon are quite similar in operation, but the latter can be bounded.)

3.3.2.1 Feature-extraction parameter estimation
This section will explain one method to extract circuit parameters from the input-output 

curves that involves identifying and extracting certain features in the output voltage profile, such 

as instantaneous rise and exponential, and deducing from these functions' mathematical forms 

the underlying circuit parameters.

In Section 3.1.1, the battery terminal voltage for the circuit in Figure 17 was expressed as

V B = E0 − I B R0R1   I B R1−V c 0e
− t

R1 C1  (18)

and its simplifications for steady-state were derived. This expression reveals that there is always 

a base voltage, the open-circuit voltage E0, which is modified instantaneously by a current. Such 

a current will charge the capacitor C1, and until it is fully charged will have a decaying 

exponential at some time constant τ . Once the capacitor is fully charged, the terminal voltage 
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will be the open-circuit voltage with a simple ohmic drop across the two resistors.

A pictorial representation of these equations will readily explain how this is utilized: 

Figure 23. The following considerations will be noted before a step-by-step outline of the 

analysis programs is given.

Figure 23: Circuit parameter extraction from battery voltage response
Recall from Section 3.1.1 that the open-circuit voltage E0, two resistances R0 and R1, and 

the capacitance C1 were all expected to be some function of SOC, temperature, and current level.

The open-circuit voltage E0 is well-known to be a function of only SOC and temperature 

[3], as it is defined for an unloaded battery. Therefore, this is only a 2-dimensional function, and 

data points for it can be gathered during rest periods. The data gathered at 20 °C is shown in 

Figure 24, both the charge and discharge case. The effect of surface charge is very clear for the 
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discharge case: the experiment was begun with the battery fully charged, and therefore the first 

open-circuit voltage is elevated. This is useful because the battery model will certainly operate at 

high SOCs, due to voltage regulation in the vehicle (and in the larger automotive electrical 

network simulator that it will run in), during which the effects of surface charge must not be 

ignored.

Figure 24: Open-circuit voltage as a function of SOC at 20 °C. Note the effect of 
surface charge at high SOC, where the experiment began.

A second point to note about the open-circuit voltage is that there is a strong hysteresis 

between open-circuit voltages in the charging and discharging cases, at the same SOCs. This is 

due to surface charge. The lengthy relaxation time required to measure the actual open-circuit 

voltage during charging (4 hours at minimum, many recommend 8 or more hours) precluded this 

measurement, and therefore a calorimetric efficiency could not be computed for every voltage 

step. It is therefore neglected; future experiments may enable us to determine this value by 
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testing at the beginning and end of a complete experimental cycle. (The clustering of points in 

the charge curve at higher SOCs is due to truncating parts of the charging current profile 

depending on battery voltage, to avoid overcharging. See the previous section.)

Another major point is regarding the non-variability of the capacitor C1. It was noticed 

when examining the voltage responses that at all but the lowest currents, either charging or 

discharging, that the steady-state voltage after a current step was applied was not a constant 

voltage but a linearly decreasing or increasing voltage (depending on charging or discharging). 

An example is shown in Figure 25. The trend of this linear-sloping voltage profile strongly 

resembled the 0.1C discharge profile obtained by a capacity test, and the Peukert effect was 

immediately suspected (see Figure 3 and Section 1.3.5). 

Once a parameter estimation algorithm was written, several of these individual voltage 

responses were analyzed for various lengths of time. Consistently, the time-constant of the 

exponential decay indicated a constant capacitor value, on the order of 200 F. This result is the 

same as found by [3] for dry cell lead-acid batteries. Therefore, the parameter estimation 

program was extended to isolate the exponential transient part of the voltage response and ignore 

the linear slope by considering varying lengths of the voltage response that yielded a time-

constant amenable to this set value of C1.

With these notes in mind, we proceed to a broad but fine step-by-step outline of the 

parameterization algorithms. These were implemented in MATLAB.

1. Load current, voltage, and temperature data acquired from LabView.

2. Filter current and voltage data using multi-stage median filtering.

3. Locate the discrete jumps in the current profile by differentiating the filtered voltage (for 

discharge experiments) or current profile (for charging experiments). Using the voltage 

signal is preferred to best isolate the samples that comprise the instantaneous voltage 

change, but the PowerTen supply used for charging injects noise into the voltage reading 

with a standard deviation at the same order of magnitude as the jumps being examined. 
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Therefore, for charging, the measured current curve is used, as its derivatives are much 

cleaner.

4. With the discrete plateaus isolated, determine the instantaneous voltage change ∆V, by 

examining the samples of the voltage for which the derivative of the current or voltage is 

above a threshold. This threshold is adjusted for each experiment, based on the filtering 

done for each one.

5. Begin looking for the exponential transient part of the voltage response by subjecting 

successive clips of the voltage to the nonlinear curve fit in the form of

V B = ab ec t  (19)

This is done using fminsearch(), with initial values set to the simple ohmic drop 

expected (see Figure 23).

6. Extract circuit parameters from each plateau's curve fit. Defining ∆V as the instantaneous 

voltage drop, IB as total current through the battery, and I Bi=i I max /N steps

R0=
V
I Bi

 (20)

R1=
bV c 0

I B
 (21)

C1=−1/c R1  (22)

If C1 is not near the expected value of C1, 200 F, discard this truncation of the voltage 

response and continue searching for a more isolated exponential transient. Build a map of 

circuit values at all available SOCs, temperatures, and current levels.

7. Once a relaxation curve is reached, record the open-circuit voltage as the final value of 

the curve-fit.

8. Once all the plateaus have been analyzed, proceed to the next experiment (be it the 

charging experiment at the same temperature or the discharge experiment at a new 

temperature).

9. Once all experiments have been analyzed and circuit value maps generated over the 

domain of the model, find a polynomial curve fit for each circuit parameter as a function 

of the model variables. Find separate polynomials for charging and discharging cases. 

Results of these procedures have been given in the next chapter, including the results of 

the curve fitting, and the experimentally obtained circuit values. (The polynomial fits for the 
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circuit parameters is a simple exercise, and while the code has been written to compute it using a 

least-squares fit, the results are not presented as the actual circuit parameters are of more interest 

at the present moment than arbitrary functions modeling them.) 

Figure 25: Battery voltage's linear steady-state due to Peukert effect
The files for this method are included in the data store, but will not be detailed here 

because the method was not used for parameter estimation. Only the plateau isolation 

functionality was used, and the algorithm does this by simply loading a highly filtered version of 

a voltage or current curve and thresholding its derivative to find the discontinuous jumps. 

3.3.2.2 Nonlinear minimization parameter estimation
While the technique outlined above has been used successfully in many studies ([22], 

[41]), it has been usually applied without transient isolation. Without transient isolation, simple 

fitting of the curve as described above yields quite high circuit resistances, which may mean that 

this method is unsuitable for the lead-acid battery over this particular domain.
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A computationally simpler by more costly approach involves modeling the system's 

dynamic equations over the small time window that it is assumed to be linear, and then searching 

for the set of parameters that engender an output most similar to the input. This task is frequently 

done in system identification. The MATLAB toolchain contains both Simulink (for creating and 

simulating systems) as well as optimization routines such as fminsearch and fmincon (in the 

optimization toolbox), which provide a complete framework to perform such a parameterization. 

This method does not rely on assuming the form of the voltage profile, and therefore non-

idealities may be acknowledged instead of being assumed to be unimportant. Essentially, the 

method involves breaking up the experiment into small windows where the battery may be 

assumed to be a linear time-invariant system. The circuit parameters of the system are then found 

using numerical optimization.

The algorithm consists of the following steps:

1. For each experiment, filter the voltage or current profiles so that it becomes easy to 

isolate each current plateau. This step is the same as in the previous method. However, 

very precise isolation of the plateaus is not necessary with this procedure, and indeed, the 

results are better (that is, are more realistic and the final simulated output using estimated 

parameters have less error) if several samples from the previous plateau are included in 

the current-voltage window.

2. For each of these isolated plateaus, use fmincon, in conjunction with a cost function 

which accepts possible circuit parameters, runs a Simulink model to obtain simulated 

system output, and finds the norm-error between the output of the Simulink model and 

the experimental results. fmincon will also be given initial guesses for all circuit 

parameters estimated, and it will search the phase space to determine the best set of 

values.

3. Once the numerical method has found the “best” set of parameters, save the states of the 

system (for the electrical system, the capacitor voltage) for the next plateau.

For discharge experiments, because exists a very accurate SOC-temperature map for the 

open-circuit voltage E0, only the circuit element values of R0, R1, and C1 were left as free 

64



variables. For the charge case, however, due to the hysteresis in open-circuit voltage between the 

charging and discharging case, E0 was also estimated.

Some notes about this parameter estimation. Both first- and second-order models were 

implemented for estimation. For the discharge case, a specialized cost function was used that 

weighted the beginning of the voltage profile more than the tail; this would force the 

minimization to emphasize the transient more than the steady-state, due to poor initial guesses. 

For the charging case, a simple norm (between the simulated and experimental curves) was taken 

as the cost function, and this worked well because initial guesses were better.

A good initial guess vector is vital for successful minimization; with up to 6 dimensions 

being searched (e.g., for the second order model, charging experiment: E0, R0, R1, C1, R2, C2), 

most of the variable spaces will not be searched very thoroughly.

All files implementing this algorithm, and results, are in the 'fmincons/' directory of 

the thesis datastore. Each experiment is placed in a different directory. The MATLAB script 

nonlinear_plant_run.m in each directory will load the appropriate experimental data files and 

run the minimization, and save the results. In the parent directory fmincons, there is another 

script plot_curvefitting.m which, given an experiment and model (first order, second order, 

etc.), will load the results of the estimation and plot the variable surfaces.

The algorithm utilizes the results of plateau isolation done using the previous method; if 

new experimental data is gathered and this method is utilized without using that curve-based 

method, a simpler plateau isolation (time-based isolation) may be used.

3.3.2.3 ARMA-based estimation
Because the system is assumed to be linear and time-invariant, a simple dynamic model 

may be set up for the electrical circuit with the only state being the capacitor voltage. During the 

discharge case, the open-circuit voltage is a known coefficient.
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V̇ c=[ −1
R1C1 ]V c  [ 1

C1 ] I B  (23)

−V BE0=[1]V c  [R0 ] I B  (24)

For charging, the state and output equations may be altered to make the open circuit 

voltage E0 an unknown parameter to be estimated:

V̇ c=[ −1
R1C1 ]V c  [ 1

C1
0][ I B

1 ]  (25)

−V B=[1 ]V c  [R0 −E0][ I B

1 ]  (26)

Given these systems with their LTI A, B, C, and D matrices containing known and 

unknown parameters, an ARMA model can be constructed. There exist simple but powerful 

algorithms that can, given input and output data (in the form of time series), robustly estimate the 

A, B, C, and D matrices. Unlike fmincon, MATLAB implementations of ARMA-model 

parameterization such as pem (in the System Identification toolbox), form a specific cost function 

based on least-squares analysis. The cost function constructed describes a quadratic surface in all 

unknown dimensions with one minimum, so instead of a nonlinear search like the one that 

fmincon implements, a simple gradient descent is employed to find the set of parameters that 

leads to minimum least-squares error (the minimum of the cost function).

Estimation of the open-circuit voltage E0, using both this method and the previous one, 

may reveal the effects of surface charge more clearly (see next chapter). 

Therefore, the input-output curves are separated again into individual current plateaus, 

and these segments of the curves are fed into the algorithm. The files ltisysid.m and 

ltisysid_e0.m implement the discharge and charging cases respectively, in the 'arma/' 

directory of the datastore. The script plot_armax.m will plot the results of these scripts.

This method proves to be much less sensitive to initial guesses, runs much faster than 
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fmincon, and also gives assurance of optimality of the estimates produced: they are precisely 

matched to the system described, and second- or higher-order systems may be defined as easily 

as the first-order one. The only clearly visible drawback is that it can only be used with LTI 

models.

The method, despite its attractiveness, was not used for the final parameterization 

because, although it gave very satisfactory results for loaded conditions (during discharge or 

charge), it yielded negative resistances and/or capacitances during relaxation for the first-order 

model. For the second-order model, the second RC pair was assigned negative values. Although 

the output curves produced numerically using these circuit parameter values closely resemble the 

experimental curves, the negative-valued elements make no sense. Clearly the algorithm works 

because of its performance during load; therefore, it is surmised that there exists some error in 

the model description as presented above (although the equations were derived from the same 

understanding that produced the Simulink model used in the fmincon-based method). Therefore, 

the method is mentioned here and the code is attached in the datastore because of its simplicity 

and power, but its results were not suitable for use in this work.
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4 Modeling results
The parameterization method described in Section 3.3.2.2 was utilized for final modeling 

and parameterization for the experimental data collected. The results will be presented in this 

chapter, with some analysis. Recall that experiments were conducted to characterize the battery 

for a first-order series-parallel RC electrical circuit at various temperatures (5, 20, and 35 °C, 

states of charge (100% to approximately 55% in 5% increments), and currents as described in 

Section 3.3.1. The code to perform similar characterization for the second-order model exists, 

but the results for these will not be included here.

The first point to note is the high variability in the datapoints observed. In some graphs, 

no single unifying trend is visible, and this is attributed to some significant factors:

1. Nonlinearity of the system.

2. High noise power due to extremely high sample rate (320 Hz). 

Preliminary work using electrochemical impedance spectroscopy (EIS) on lead-acid 

batteries indicates a strong nonlinearity at high and low frequencies, well-modeled by a Warburg 

impedance (see page 28). Therefore, even the best-fitting simulated voltage curves presented 

below have slightly different patterns than the experimental curves; this is not solely a limitation 

of the first-order model as the problem persisted in the second-order curve fits.

The major note is that circuit parameters obtained immediately after rest and during rest 

are discontinuous from the rest of the surface described by the circuit parameter, as it varies over 

the SOC-TB-IB planes. A glance at any of the subsequent maps illustrate this: the curves obtained 

for 0 A and the first non-zero current load (16 A for discharge, -3.3 A for charge) are noticeably 

different than the other curves. This is even more clearly visible on surface plots (best viewed on 

an interactive screen, and therefore not reproduced here).

Another point to note is how little the fmincon algorithm attempted to tune the 
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capacitance C1. This is because it is essentially fitting time-constants, and therefore tunes R1 

more aggressively.

Also, the plots of the open-circuit voltage during charging (Figures 39, and especially in 

44 and 49) clearly indicate the effect of surface charge: clusters of six points are fairly linear, but 

are followed by a significant discontinuous jump to the next set of pulses. This happens during 

the 200 second rest period between each set of plateaus, and the open-circuit voltage rises as the 

charge permeates the electrodes. 

One note on experimental results that has only recently been considered is the resistance 

of the cables connecting the battery to the experimental setup. To keep the battery inside the 

environmental chamber, approximately 2 meter long cables connect the battery to the load and 

source; the resistance of this cable may be significant when compared to the series resistance of 

the battery, R0, and therefore should be measured. This enables one to see that points in a certain 

part of the domain may not fit the rest of the points, and this is most often due to bad fitting 

(minimization did not converge). 

One may remark that the curves presented here are more more jagged when compared to 

the fitted data from other works, such as [3]. An important point to note is that this work 

attempted to develop an algorithm that would work without fine-tuning the initial guesses or cost 

functions for every single part of every experiment. Once reasonable initial guesses have been 

identified for a battery type, given the model type, the fmincon approach converges quite 

satisfactorily, and it is left to a human to examine the curves and locate the trends. From these 

curves, outliers may be eliminated for an arbitrary polynomial fit, for example.

With these notes in mind, we present the latest results of modeling of a single automotive 

lead-acid battery.

69



4.1 Discharging results

4.1.1 20 °C (discharging)

Figure 26
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Figure 27

Figure 28
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Figure 29
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4.1.2 35 °C (discharging)

Figure 30
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Figure 31

Figure 32
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Figure 33
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4.1.3 5 °C (discharging)

Figure 34
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Figure 35

Figure 36
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Figure 37

78



4.2 Charging results

4.2.1 20 °C (charging)

Figure 38
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Figure 39

Figure 40

80



Figure 41

Figure 42
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4.2.2 35 °C (charging)

Figure 43
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Figure 44

Figure 45
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Figure 46

Figure 47
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4.2.3 5 °C (charging)

Figure 48
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Figure 49

Figure 50
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Figure 51

Figure 52
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5 Conclusion and nomenclature

5.1 Conclusion and future work
The work here presents a common battery modeling methodology and the results of its 

application to modeling automotive lead-acid batteries over the range of environmental 

conditions that it is expected to operate in. The two major portions of the work, and the biggest 

contributions, was the experimental methods (excitation currents used) and parameter estimation. 

Both of these have appeared previously, and were applied successfully to the specific task of 

automotive battery modeling.

The work of this thesis presents an incomplete picture of the full process of modeling and 

fault-diagnosis of these batteries. The modeling was done separately from fault diagnosis; the 

fault modes were investigated and presented as a literature review, but no batteries were aged to 

validate or quantify these highly variable processes. The modeling also cannot be considered 

complete as it was based only on one battery. 

A number of improvements could be made to the experimental methodology and analysis 

techniques presented in this work. 

5.1.1 Experimental methodologies suggestions
The data acquisition (DAQ) hardware is quite adequate for battery modeling. However, 

the signal conditioning electronics designed for the [4] work are mysterious and not expandable. 

For example, it remains unclear exactly what kind of anti-aliasing is performed by the entire 

system on the signals that it samples. This is clearly a major area for future improvement; with 

proper anti-aliasing filters, a much lower sample rate may be selected (e.g., 20 Hz instead of 

320), yielding less noisy data.

The software controlling the National Instruments DAQ hardware is written in LabView. 
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We reiterate the suggestion in [4]: it may be very beneficial for future users of the system to 

invest one or two weeks in rewriting the DAQ software in MATLAB, using the Data Acquisition 

Toolbox. This would allow much faster tuning of the experimental process and could enable 

sophisticated testing patterns. These can of course be implemented in LabView, but the majority 

of electrical and mechanical engineers working on battery technology at the Center for 

Automotive Research are much more familiar with the language-based programming style of 

MATLAB than the graphical style of LabView.

Also, the battery exercise experiments were done only on a single battery. The 

manufacturing variability of automotive batteries is known to be extremely high; the battery will 

ensure a certain minimum Ampere-hour capacity, but specimen may have much higher 

capacities. Therefore, a number of batteries should be tested. 

The excitation current profile used here seems quite suitable for automotive batteries, and 

allows a battery to be characterized as such in three days. 

5.1.2 Modeling work
The major concern that the excitation profile raises is the issue of surface charge. Clearly, 

this causes the open-circuit voltage hysteresis seen between the charge and discharge cases, and 

one can also clearly see the sharp rise in open-circuit voltage between pulses (during the 200+ 

seconds of rest) in the figures for charging above (Figures 44 and 49). It remains unclear how 

one can model these effects.

A second point about the modeling was raised in the previous chapter as well: the 

nonlinearity of the battery may not be reducible, for large currents, to local LTI models. Very 

preliminary EIS experimentation on automotive lead-acid batteries indicates that the effect of a 

nonlinear Warburg impedance (see page 28) is significant in the high and low frequency regions.

The effectiveness of the ARMA battery model (a simple IIR filter that implements the 
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system's differential equations) would be immense if the extraneous (negative) circuit parameters 

could be eliminated. The strength of using the form of the desired system itself, instead of the 

form of an input or output, is very attractive, without having to utilize exotic genetic algorithms 

or particle swarm optimizations. 

Finally, we address the issue of a thermal model. All the work on parameter estimation 

done here assumes an isothermal environment, but during loading of the battery, there is 

certainly temperature changes. The question of how these microchanges affect battery 

characteristics remains open. 

5.2 Nomenclature

5.2.1 Variables
Variable Name Comments
E0, Voc Open-circuit voltage In Volts.

R0 Low-frequency resistance In Ohms.
R1 1st high-frequency resistance In Ohms.
C1 1st high-frequency capacitance In Farads.
R2 2nd high-frequency resistance In Ohms.
C2 2nd high-frequency capacitance In Farads.
IB Battery current In Amperes. >0 is discharge.
VB Battery terminal voltage In Volts.
Q State of charge 0≤Q≤1

T Temperature from ambient In Celsius.

Q0 Nominal capacity In Ampere-hours.
C Unit of current, equivalent to 

Q0 in A.
In Amperes. E.g., 2C for a 50 

Ah battery is 100 A.
Zw Warburg impedance A frequency-dependent 

complex impedance.

5.2.2 Acronyms
Acronym Explanation

SOC State of charge.
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Acronym Explanation
OCV Open-circuit voltage.
A-h Ampere-hours (measure of capacity).
SLI Starting, lighting, ignition (automotive batteries).

VRLA Valve-regulated lead-acid (maintenance-free batteries).
DTC Diagnostic trouble code.
OBD On-board diagnostics.
SOH State of health (degradation due to aging).
KF Kalman filter(ing).

EKF Extended Kalman filter(ing).
NLTV Nonlinear time-varying.
LTV Linear time-varying.
LTI Linear time-invariant.
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